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Abstract

Recent years have seen a remarkable development of deep neural network
techniques for data analysis, along with their increasing application in scientific
research across different disciplines. The field of mathematics has not been ex-
empted from this general trend. The present paper provides a survey of recent
applications of neural models to mathematics and assesses their philosophical sig-
nificance concerning the role of language in mathematics.

1 Introduction
On the 15th of February, 2023, Yuhuai (Tony) Wu, researcher in Artificial Intelligence
at Google at that time, gave a talk at the UCLA Institute for Pure & Applied Math-
ematics (IPAM).1 In his talk, Wu presented his most recent results in the automatic
formalization of proofs through deep neural networks. The workshop was organized
by a small and highly select committee, including two Field medalists, and the audience
was composed of well-established world specialists in the field of automated theorem-
proving. While explaining the details of the neural model in question and providing
elements for its epistemological guarantees to this intrigued yet somewhat skeptical
public, Wu affirmed: “We know for sure that the informal proof, the natural language
proof, is correct because it is produced by a human”. The statement was followed by a
second of sincere bewilderment in the room, only resolved by one glorious collective
laugh. Unable to hide his confused embarrassment, Wu tried, however, to reassure the
crowd by adding: “Ok, so, we make sure that the human. . . we scrape the solutions
from the Internet!”, inevitably provoking a new burst of laughter, this time sounding
like a redemption.

Wu’s statement is not improvised or misguided, nonetheless. Let alone isolated.
For a proof, take the official presentation of the second version of Google’s Large
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Language Model PaLM (Ghahramani, 2023), released shortly after Wu’s talk. In it,
one can read the following passage, flagged as “weird” by the renowned researcher at
the Santa Fe Institute, Melanie Mitchell:

PaLM 2’s wide-ranging dataset includes scientific papers and web pages
that contain mathematical expressions. As a result, it demonstrates im-
proved capabilities in logic, common sense reasoning, and mathematics.
(Ghahramani, 2023)

The rapid proliferation of this peculiar kind of statement in the current state of
research at the crossroads of mathematics and computing is not as much anecdotal
as it is symptomatic. As is symptomatic the perplexed reaction of well-established
specialists in the fields concerned. Both are the symptom of the surge of a perspective
on mathematical knowledge and practices radically at odds with the one that governed
our image of mathematics for more than a century. This circumstance is the effect of
an ongoing revolution in the field of machine learning resulting from the remarkable
development of Deep Neural Network models (DNNs) during the last two decades. As
it has been widely observed, the fact that tech corporations are the main actors of this
technological revolution entails that most research efforts associated with this process
are inseparable from the development of market products and the increase of profit
under the brand of “Artificial Intelligence” (AI). However, the past years have also
witnessed the application of the new neural methods to various aspects of scientific
research across the disciplinary spectrum, from natural to social sciences. Significantly,
mathematics has not been the exception to this general trend. Indeed, since the mid-
2010s, many efforts have been dedicated to treating numerous aspects of mathematical
knowledge using DNNs of various kinds.

Mathematics has been in the sights of AI champions since the very emergence of
the AI program. In his pioneering 1948 paper on “Intelligent Machinery”, for instance,
Turing (2004) already considered mathematics a privileged field for the application of
“thinking machines”. And the celebrated 1955 Dartmouth project proposal included a
supplement by Newel and Simon with a plan to extend to “learning, self-programming
and the self-selection of theorems to be proved (innovation)” their work on “Mathemat-
ics Machines” that “discover proofs in the propositional calculus [. . . ] by employing
search procedures that appear at least grossly similar to those used by humans in deal-
ing with the same problems” (Newell and Simon, 1956). At any rate, considering the
conception of intelligence motivating the AI program, one should not be surprised that
mathematics falls within its scope.

However, given the nature of recent neural techniques and the unexpected results
they can afford, as natural as it may be for the AI ideology to address mathematical
tasks, the very possibility of their successful application to mathematical knowledge
cannot but come as a surprise from a conceptual and philosophical perspective. Hence,
faced with the results of the renewed AI momentum, it seems inevitable for well-
established conceptual positions to return to their foundations and reopen old ques-
tions: Wasn’t the whole idea of proof assistants and automated theorem provers to
prevent the frailty of human proving practices instead of reproducing them and relying
on them as a gold standard? Wasn’t mathematical competence a condition to write
and read scientific papers and mathematical expressions rather than their miraculous
effect? Wasn’t natural language the cause of rather than the solution to the multiple
problems preventing mathematics from achieving higher degrees of precision? And
more generally, didn’t the formal nature of mathematics, finally conquered by the logi-
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cal regulation of its symbolic means, make it impassive to the strong empirical position
assumed by connectionist approaches guiding the application of DNNs?

In the current state of the art, it is not possible to determine who will have the last
laugh. Yet, whatever the outcome, the rapid spread of deep learning techniques will
likely have, for better or worse, a significant impact on future mathematical practices.
For this reason, the current situation represents a most exciting moment in the eyes of
the historian and philosopher of sciences. A moment where established certainties can
and need to be regarded afresh to assess if they hold still in a context that suddenly is no
longer the same. Hence, even as the symptom of a bewildered state, the philosopher can
only rejoice at the reopening of those fundamental epistemological questions, hoping
that a philosophical treatment of the latter can contribute to critically assessing the
stakes of the new situation and indicating novel orientations.

The present paper intends to make a first step in this direction. As such, its pri-
mary purpose is to offer a survey of the many recent applications of neural machine
learning techniques to different aspects of mathematical knowledge, calling attention
to what can be of significance for a philosophy of mathematics. It will appear that,
disregarding traditional boundaries in the mathematical landscape, the orientations in
this emerging research area tend to be distributed following different mathematical
practices. Yet, despite their apparent dispersion across those practices, all applications
share, if only unwittingly, a common philosophical assumption. It is this assumption
that the statements opening these pages announced. Namely, the idea that whatever
we do when we do mathematics, we do it with words. More precisely, the analysis of
different mathematical applications of DNNs shows that their potential success should
force us to revise our conception of the relation mathematics maintains with language,
and understand that and how natural language, in its most immediate and unaffected
expression, constitutes a decisive component of mathematical knowledge.

Accordingly, the plan of the chapter is as follows. In the next Section (2), we
provide a brief presentation of deep neural network models. Section 3 constitutes the
principal contribution of this paper, offering a survey of recent applications of DNN
models to mathematical tasks. The section is organized into four parts, featuring four
distinct lines of research identifiable in the field, according to the task assumed by
researchers to characterize mathematical practice: proving theorems, manipulating ob-
jects, acquiring skills, or addressing open problems. Finally, in Section 4, we address
the philosophical significance of those results, focusing on the relation between math-
ematics and natural language and the challenges for a theory of language where the
semantic aspects of mathematical knowledge can be inferred from pure syntax. We
conclude in a programmatic tone, indicating the perspectives open to a language-driven
philosophy of mathematical practice.

2 What are Deep Neural Nets?

A detailed presentation of DNNs falls outside the scope of these pages. Our account of
DNNs will thus remain deliberately simplistic, offering the elementary features needed
to grasp the main characteristics of their application to mathematical tasks in the fol-
lowing section. Fortunately, owing to the growing popularity of AI applications in
recent years, a wide range of presentations are now readily accessible to the interested
reader, featuring different levels of granularity and difficulty. In particular, for a sys-
tematic and detailed presentation, we refer the reader to Goodfellow et al. (2016) or
Brunton and Kutz (2022). Also, Williamson (2023) does an excellent job at providing
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a rigorous yet brief and accessible introduction to neural nets addressed to the unin-
formed working mathematician.

From a bird’s-eye view, artificial neural networks are parametric functions between
two vector spaces. Therefore, their application to any field relies on the possibility
of encoding some information as a vector (i.e., a list of numbers), feeding the latter
into the function as an argument (or the “model” ’s input), and retrieving a target vec-
tor as output, to be decoded as some other kind of information. The nature of the
information is assumed to be of little significance as long as it can be encoded as a
vector and a vast set of examples of pairs of input and target vectors is available to
train the model. Indeed, neural network architectures have been proven to be universal
function approximators (Hornik et al., 1989). Therefore, given enough examples of in-
put and target vectors, a neural net will approach a function transforming one into the
other, hopefully in a way that performs as expected for arguments outside the training
data.2 To encourage this “out-of-distribution generalization”, neural models are typi-
cally trained on only a fraction of the available data (typically around 90%) and tested
on the remaining held-out part.

In the most elementary cases, the internal structure of the model is composed of a
series of transformations, each having a similar configuration: a linear transformation
(i.e., a matrix), a bias (an added vector), and an activation (non-linear) function. More
precisely, a DNN can be described as a function f : Rn → Rm explicitly expressed as a
composition:

f : Rn f1−→ Rn1
f2−→ ·· · fK−→ RnK g−→ Rm (1)

with
fi(xi−1) = a(Mixi−1 +bi) (2)

where xi = fi(xi−1) and x0 is the input vector; the Mi are ni ×ni−1 matrices represent-
ing the linear functions; the bi ∈ Rni are the biases; the a is the non-linear activation
function; and g is the output function.

Each one of these complex transformations (i.e., each fi) constitutes a layer. Hence,
when a vector is fed into a layer, it is multiplied by the matrix, the bias vector is added,
and the non-linear function is applied element-wise. The deep character of neural nets
is determined by the composition of many of these layers so that the output of one layer
becomes the input of the next one until a final output vector is produced.

Finally, the model is trained by iteratively updating the components of the matrices
and bias vectors (or weights) of the different layers. This is achieved by performing
a gradient descent on a loss function, that is, on a function that measures the error
between the vector output by the model and the target vector provided by the training
set. Through an algorithm known as backpropagation, the weights of different layers
are progressively adjusted so that the average error over the set of examples hopefully
converges to some minimum value.

There exist many training strategies. In supervised learning, the target vectors
are handcrafted to encode a property of the data encoded in the input vector. In self-
supervised learning (sometimes mistaken for unsupervised learning), the target vector
is some part of the input vector masked when the latter is fed to the model. Finally, in

2This does not mean that any task is solvable by means of neural models, as a significant part of the
AI community tends to think. Many problems, maybe most of them, do not accept being constructed as
a predictive task based on a finite number of supposedly similar cases expressible as vectors. Problems in
politics, law, art, and many other domains of social life cannot, by their nature, be framed in such terms
without transforming, if not wholly obliterating that very nature.
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reinforcement learning, each output by the model receives a score through a carefully
designed reward function, and the model’s objective is to maximize that score.

As we said, the scheme presented here corresponds to the most elementary neu-
ral models. In recent years, DNNs have become increasingly complex and diversi-
fied, from convolutional neural nets (CNNs) and recurrent neural nets (RNNs, LSTMs)
to transformers and diffusion models, to name only the most popular architectures.
Those architectures remain particularly sophisticated cases of the basic model pre-
sented above. Due to their significance in the current state of the art, the case of
transformers deserves special mention. Introduced by Vaswani et al. in 2017 and pop-
ularized by models like BERT (Devlin et al., 2018) and GPT-3 (Brown et al., 2020), the
transformer architecture is characterized by the implementation of an attention mech-
anism. Simply put, the idea is to enhance each layer fi of the net with a set of vectors
capable of determining, for each component of the input vector xi−1, which other com-
ponents of that vector are relevant to compute the correct output vector (i.e., which
other components the component in question “attends” to). Like the linear compo-
nents of the architecture, attention vectors are randomly initialized and jointly trained
with the rest of the model. Among other technical advantages, the attention mecha-
nism allowed the exploitation of parallelism during training, significantly reducing the
training time and paving the way for a massive increase in scale, both of model size
(parameters) and training data through self-supervised learning. Since their introduc-
tion, transformers have exhibited surprising capabilities across the most diverse tasks
and domains and have been widely adopted, defining the state of the art at the moment
of writing these pages.

3 How to Do Maths With Neural Nets
Applying DNN models to the processing of mathematical knowledge is not a straight-
forward and unambiguously defined task. As is usually the case with current AI ap-
plications across domains, craftsmanship in computational models is sometimes more
prominent than proficiency in the objects those models are expected to analyze. Ac-
cordingly, the different DNN applications to mathematics are less determined by a re-
fined elaboration on the nature of mathematical objects and knowledge than by the AI
researcher’s implicit assumptions as to what characterizes a mathematical task. Given
the current exploratory state of a field that evolves at a remarkable speed, the answers
to this unraised question are multiple, with new results and sometimes original perspec-
tives released on a monthly basis. Any ambition to provide an exhaustive account of the
current state of the art is, therefore, doomed to fail from the start. Hence, we will con-
tent ourselves with presenting what we recognize as the main trends underlying these
developments. Significantly, those trends are informed by their implicit understanding
of what it is that we do when we do mathematics. From this perspective, it is possible
to identify four main trends in the field, depending on whether the research is oriented
toward finding proofs, manipulating objects, acquiring skills, or supporting heuristics.
The following sections present each one of these orientations, providing some details
of what we identify as their respective seminal papers, and briefly accounting for a few
landmark results and developments.3

3The reader should keep in mind that, despite our efforts to cover as much of the field as possible, the
following constitutes only a partial view on the state of the art, biased toward works exhibiting philosophical
interest. A more precise perspective can be obtained by inspecting the “Related Work” section usually
included in the papers we will present.
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:: t99 jordan: Jordan curve theorem in Mizar
for C being Simple closed curve holds C is Jordan;

:: Translation to first order logic
fof(t99 jordan, axiom, (![A] : (
(v1 topreal2(A) & m1 subset 1(A,
k1 zfmisc 1(u1 struct 0(k15 euclid(2))))) =>
v1 jordan1(A)) ) ).

Figure 1: Network structure (left) and input example (right) for the premise selection
task in DeepMath Alemi et al. (2016).

3.1 Proof-Oriented

What can certainly be taken as the first significant attempt to apply by then well-
established DNN models to the solution of mathematical tasks dates back to 2016,
with the DeepMaths paper by Alemi et al. (2016). This work pioneered a prolific line
of research oriented by the implicit assumption that theorems are the key to mathemat-
ical knowledge and theorem proving constitutes, therefore, the heart of mathematical
practice. Accordingly, from this perspective, the main goal is to train DNN models to
find proofs. Ideally, one would train a neural net on an extensive corpus of existing
proofs, after which one could feed a yet unproved mathematical statement (a “conjec-
ture”) to the model, which would output a proof, if any. Notice that this is not the same
as constructing a logical framework for automatic theorem proving because there is no
definition of an explicit logical system in this case. One could imagine logical systems
to be just a specific kind of function—even if a partial one—mapping the domain of
statements onto that of proofs, and we are asking the neural model to approximate such
a function.

Researchers within this trend tend to think that solving this task is practically suf-
ficient to automate mathematical practice altogether. Indeed, in a paper significantly
entitled Towards the Automatic Mathematician, Rabe and Szegedy (2021) affirm: “Ide-
ally, we could simply talk to an automatic mathematician like a colleague, and it would
be able to contribute to mathematical research, for example by publishing papers with-
out human support.” While the authors vaguely mention other tasks such as “formulate
and explore its [the automatic mathematician’s] own theories and conjectures”, theo-
rem proving is acknowledged as “an important instrument of our plan” and, indeed, the
only strictly mathematical task considered in their manifesto.

In practice, however, things are more subtle. Actual research in this direction
has focused chiefly on specific subtasks identified within the framework of existing
interactive or automated theorem provers (ITP/ATP), such as E, HOL Light, Mizar,
Metamath, Isabelle, or Lean. The focus is mainly put on those tasks that represent
computational bottlenecks. In particular, there has been intensive research on premise
selection, namely “the selection of a limited number of most relevant facts for proving
a new conjecture” (Alemi et al., 2016, p. 1). This task was the one motivating Alemi
et al.’s (2016) pioneering work, where it was implemented as establishing the pairwise
relevance between conjecture and axioms by learning to predict the usefulness of given
axioms in the proof of given conjectures. The overall strategy consists in feeding both
a conjecture and an axiom into the model, processing the input vectors independently
through different network architectures producing intermediate vector representations
of various kinds, concatenating those vectors, passing them to a fully connected DNN,
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and outputting a probability measure of the usefulness of the axiom for proving the
conjecture (see Fig. 1). The dataset used was the Mizar Mathematical Library, a library
of almost 60K theorems proved in Mizar, together with unnamed top-level lemmas.
The input axioms and conjectures were then the strings (i.e., sequences of digital char-
acters) representing the first-order logic formalization extracted from the Mizar Library
(see Fig. 1 for an example). The authors tested two ways of feeding these texts into the
model: character by character and word by word (token by token). In the latter case,
tokens recognized as identifiers were mapped onto their already processed definition.
Other than that, the expressions were fed sequentially with no parsing information. For
each conjecture, the model was trained to produce a probability distribution over the
set of possible premises. To evaluate the model, the authors assessed the number of
conjectures that could be proved from the top-k premises in the corresponding proba-
bility distributions (for different values of k) using the E automatic prover. They also
evaluated the ranking quality, measuring if relevant premises appeared at the top of the
rank. Such measures were then used to compare the different DNN architectures.

The results obtained by the best of those early models exhibited a slight increase
in performance compared to existing benchmarks. Although modest, the outcome was
far from wholly unreasonable, showing neural models could compete with more clas-
sically engineered techniques and handle mathematical proofs to some extent. This
work sparked then a series of other studies in the same direction, where the integration
of neural techniques within ITPs and ATPs can be seen to increase. For example, Loos
et al. (2017) provided evidence that integrating neural techniques for premise selection
in the proof search procedure of the E ATP results in an increased amount of theorems
proved under time and memory constraints. On the training side, Kaliszyk et al. (2017)
proposed a new dataset for higher-order theorem proving, comprising over 2 million
training examples of proof steps extracted from almost 11,400 proofs formalized by
humans in the HOL Light ITP. The authors also provide a series of benchmarks for dif-
ferent machine learning models over that dataset. HOL Light was also used by Bansal
et al. (2019) to propose a different training strategy, adding to the usual supervised
learning on human proofs a reinforcement learning step. Instead of being trained to
predict the correct premise, the model interacts as an “artificial agent” with the ITP,
proposing both a tactic to be applied and a rank over the set of possible premises. The
success or failure of the ITP to apply the received tactics on the premises is then used
as a reinforcement signal to train the model to predict pairs of tactics and premises.

With the evolution of this line of work, researchers started considering a wider
range of theorem proving subtasks. Kaliszyk et al. (2017), for example, mention,
among others: “Predicting whether a statement is useful in the proof of a given con-
jecture”, “Predicting whether a statement is an important one (human named)”, “Pre-
dicting the name given to a statement”, or “Generating the conjecture the current proof
will lead to” (p. 4). Bansal et al. (2019) add some others to that list, such as predicting
the same tactics as the human proofs or predicting goals and subgoals. Also, tactics
prediction has gained increasing attention due to the significance of ITPs and ATPs
in the concrete developments of this research orientation (Bansal et al., 2019; Paliwal
et al., 2019; Lee et al., 2020). More generally, recent years have seen a proliferation of
datasets, models, and benchmarks, which contribute to the expansion of this perspec-
tive.

The arrival of the transformers architecture (Vaswani et al., 2017) brought about
new developments in neural theorem proving. As we saw, transformers are designed to
deal with sequential data in a self-supervised and highly scalable way. Their success in
the field of AI is inseparable from the surprising capabilities exhibited in the process-
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ing of natural language, motivating the emergence of so-called Large Language Models
(LLMs). We will have the opportunity to say more about LLMs in the Skill-Oriented
section below. For now, it is sufficient to note that, encouraged by their linguistic capa-
bilities, researchers have explored multiple ways to utilize transformer-based models
for neural theorem proving.

A noteworthy case is GPT-f (Polu and Sutskever, 2020), an automated prover and
proof assistant for the Metamath language, which was capable of significantly outper-
forming the state of the art in neural theorem proving at the moment of its publication.
GPT-f is based on a model architecture similar to GPT-2 and GPT-3, the celebrated
LLMs by OpenAI. It is designed to perform backward proof search, starting from a
root goal and exploring tactics possibly leading to such a goal. The process may in-
volve identifying other subgoals for which new tactics are explored iteratively (with
a pre-specified bound on the iterations) while keeping track of the tree structure. The
neural model is therefore trained to predict a “proofstep” (i.e., a tactic and the corre-
sponding subgoals) for a given goal, both encoded as strings, which are then passed on
to the Metamath kernel for formal verification. The use of transformers has the advan-
tage of unifying the neural architecture, as opposed to using complex combinations of
different architectures as in previous models. It also allowed for pretraining as a lan-
guage model over various kinds of corpora (cf. LLMs in the Skill-Oriented section),
including the mathematical fragments of arXiv and StackExchange as well as computer
code from GitHub. Other than achieving a new state of the art for Metmath (56.22%
closed proofs in the test set vs. 21.16% for the best existing models at the time), the
authors could show that, within this framework, both language modeling pretraining
(especially on mathematical corpora) and increased model size result in improved per-
formance. Interestingly, GPT-f could generate 23 shortened proofs of existing state-
ments in the Metamath library, reported as enthusiastically received by members of
the Metamath community. For the authors, this was “the first effective contribution of
a deep learning system to a formal mathematics library” (Polu and Sutskever, 2020,
p. 14).

One of the drawbacks of transformer architectures is that their high performance is
conditioned to training over a massive amount of data, orders of magnitude larger than
existing hand-crafted mathematical libraries. A common strategy has been to augment
the latter with synthetic data generated in various ways out of known mathematical
properties and algorithms (cf., for instance, Wang and Deng, 2020). However, Polu
and Sutskever (2020) showed that scaling the portion of synthetic data up to 5% of
the training data actually hurt the performance of their model. While the authors did
not inquire into the reasons for this empirical behavior, they proposed an alternative
way to circumvent the scarcity of proof data by training a “value function” helping
to guide the proof search more efficiently. Essentially, such a function predicts the
probability that a subgoal is actually used in the final proof. The function is trained on
a synthetic dataset produced by sampling proofs from the trained neural model itself,
keeping only those that the formal verifier can prove. Their experiments show that
the iterative use of this procedure, also known as expert iteration leads to significantly
better results, suggesting a strategy of “continuous self improvement”. Following this
line of research, Lample et al. (2022) showed that replacing this iterative process with
an online training over proofs generated by the model and verified by an ITP results in
substantial performance gains.

In recent years, the success of DNN models—and transformers in particular—in
the processing of natural language motivated what can be conceived as a subtle but
notable reorientation of the research efforts within proof-oriented approaches toward
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what came to be known as autoformalization. In a highly programmatic paper, Szegedy
(2020) defines an autoformalization system as “an automated system that is capable of
automatically formalizing significant portions of mathematics from a natural language
input and verifying it automatically” (p. 4). From this perspective, formalizing es-
sentially means expressing statements as computer programs susceptible to be verified
computationally following transformation rules. Implicit assumptions concerning the
nature of mathematics within this body of work become here explicit: “Mathemat-
ical reasoning is just reasoning about anything specified formally” (p. 4). Yet, this
recent turn pushes these assumptions further and presents autoformalization as a nat-
ural step toward AI models endowed with “general reasoning” capabilities. In this
way, mathematical practice, which had already been reduced to formalizing practices,
is spontaneously raised to the level of “the discipline of pure reasoning”: “Mathemat-
ical reasoning is not about mathematics per se, it is about reasoning in general” (p. 3).
The distance between thought and mathematical thought becomes thus so misty it is
then “natural to ask: Will we ever arrive at the point where an AI agent can learn to
do reasoning as well as the best humans in the world in most established domains of
mathematics.” (p. 4)

However, all these prejudices about mathematics, reasoning in general, and the best
humans in the world should not divert our attention away from an essential fact: This
somewhat unexpected emergence of informal mathematics through natural language at
the heart of the most extreme attempts to fully automate theorem proving looks more
like an admission of weakness than a tour de force. Indeed, when one examines the
recent evolution of DNN models, it is easy to identify a subtle glide away from highly
measurable functions toward more informal tasks, such as text and image generation.
For the latter, unforeseen capabilities can be achieved across multiple fields, including
mathematics and programming. Yet, the counterpart of that originality is a loss of
robustness and reliability, all the more fundamental that failure is intrinsically more
difficult to assess in informal settings (how can a poem or a picture be “incorrect”?).
The very nature of this success, informal by design, together with the relative scarcity
of formal proof corpora, left researchers in the area little choice other than focusing on
bridging a gap secretly undesirable for most of them between formal methods on one
side and neural linguistic models on the other.

Besides explicit or implicit motivations, recent explorations of natural language
expressions of mathematical statements such as Ferreira and Freitas (2020, 2021) and
Welleck et al. (2021), and autoformalization tasks in particular, are of interest in their
own right. A noteworthy work concerning the latter is that of Wu et al. (2022), ex-
ploiting the “few-shot learning capabilities of LLMs” to produce translations into Is-
abelle code of natural language mathematical statements and problems contained in
the MATH (Hendrycks et al., 2021b) and MiniF2F (Zheng et al., 2022) mathematical
competition datasets. The relative success of this approach is nonetheless remarkable
considering the negligible amount of aligned pairs of informal-formal expressions ex-
pected to be present in the vast training corpus of the LLMs. Autoformalization faces,
however, the challenge of articulating the high-level structure of informal proofs with
the low-level details required for automated proving. To address this difficulty, Jiang
et al. (2023) proposed a method where an initial informal statement is associated with
an informal proof draft (either through available data or through automatic generation
by an LLM), which is, in turn, broken down by an LLM into a formal proof sketch,
i.e., a high-level structure of formal statements, to be then passed on to an ATP. The
experiments on the miniF2F dataset suggested that this strategy is indeed capable of
successfully guiding the ATP and boosting its proving capabilities, with comparable
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results for the cases where the informal drafts were produced by humans or LLMs.
Considering the development of this research orientation from its inception up to

the current state in 2023, one thing seems clear: Despite a declared inclination to-
ward end-to-end black-boxed models inherited from AI perspectives and coated with
multiple ideals of intelligent machines and dispensable humans, DNN applications to
theorem proving have actually become increasingly reliant on existing (non-neural) in-
teractive or automated theorem provers. To the extent that, as of today, it is hard to
imagine how the latter could be dispensed with. And yet, against all odds, neural tech-
niques have proved to contribute to the performance of formal theorem proving within
those frameworks. So much so that a hybrid strategy, integrating neural techniques
and I/ATPs, appears today as a promising research program for the years to come. In
this sense, Jiang et al. (2022) proposed a framework for neural models to interact with
any hammer-enabled ITPs, showing that neither the neural model nor the ITP alone
can match the performance achieved by their careful integration. However modest and
far from its promises the contribution of neural nets may be, the latter have at least
succeeded in making them through means that were entirely out of the radar of tra-
ditional formal methods. From a philosophical standpoint, the leveraging of informal
expressions resulting from various mathematical practices, and the reliance on natural
language in particular, are distinctive features of this approach, to which we will have
the chance to return. For now, let us say that, despite the significant challenges and the
ideological noise surrounding AI applications to theorem proving, DNNs have shown
that they can do something with mathematical proofs.

3.2 Object-Oriented
A second research orientation for applying DNN methods to mathematics shares a sim-
ilar use of the learning models with the first. However, the focus is put on manipulating
mathematical objects rather than statements. Admittedly, proofs can also be under-
stood as mathematical objects, in which case proof-oriented approaches could also fall
under this category. At any rate, as learning models, DNNs are, in principle, indiffer-
ent to this distinction. Yet, both from a philosophical and a formal standpoint, there is
arguably a significant difference between, say, manipulating numbers to perform arith-
metical operations and proving a general arithmetical property for a possibly infinite
set of numbers.

In line with the general neural models’ general setting, the goal in object-oriented
mathematical applications is to feed the expression of a mathematical object (e.g.,
equation, terms of a series, etc.) into the model and expect the latter to output some
specific result or property associated with it (e.g., solution, recurrence relation, etc.).

The most elementary case of this strategy is given by arithmetical operations and
their corresponding results. Early assessments of deep neural models already showed
that recurrent architectures (RNNs) could be trained to perform integer addition and
multiplication based on binary representations with strong generalization capacities
(Łukasz Kaiser and Sutskever, 2016). Those results were extended to include decimal
multiplication through a binary encoding of each decimal digit (Freivalds and Liepins,
2017). Notice that, in all cases, from the model’s perspective, input numbers are simply
tokens, so there is no reason a priori that their numerical content is preserved when
represented as the usual sequence of digits. Hence the binary representation preferred
by these early approaches. Indeed, Trask et al. (2018) showed that other numerical
representations exhibit serious difficulties generalizing outside the range of values seen
in training and proposed to enhance neural models with a specific architecture designed
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Encoding 3.14 −6.02.1023 Tokens / coefficient Size of vocabulary

P10 [+, 3, 1, 4, E-2] [-, 6, 0, 2, E21] 5 210
P1000 [+, 314, E-2] [-, 602, E21] 3 1100
B1999 [314, E-2] [-602, E21] 2 2000
FP15 [FP314/-2] [FP-602/21] 1 30000

Table 1: Examples of different encodings for numerical coefficients in Charton (2021).

to incorporate an inductive bias for numerical computation.
More recently, researchers have explored the capabilities of DNNs to perform nu-

merical calculations on more complex mathematical objects. A landmark in this sense
is the work by Charton (2021), training transformers to compute solutions to linear al-
gebra problems, including transposition, addition, multiplication, and inversion of ma-
trices, as well as eigenvalues, eigenvectors and singular value decomposition (SVD).
His results showed the models can indeed compute approximate solutions with high
accuracy, generalizing out of their training distribution under certain conditions and
even extrapolating to larger numbers. Unlike most of the work presented in the pre-
vious section, models were here trained on synthetic corpora specially tailored for the
intended tasks. This work is emblematic of an object-oriented approach; therefore it’s
worth examining it more closely.

The input and output in Charton (2021) are, then, matrices of real numbers. How-
ever, their representation was carefully designed to fit the kind of data on which trans-
formers are known to exhibit high performance, namely, sequential data. Matrices
were thus encoded as sequences of coefficients prefixed with the matrix dimensions.
Remember that each term in a sequence is simply a token. For this reason, numeri-
cal coefficients were also encoded following very precise rules. Based on the general
principle that real numbers can be represented by a triplet of a sign, a mantissa, and an
exponent, four alternative encodings were proposed for that purpose: base 10 and 1000
encoding of the mantissa, signed base 1000, and floating point (see Table 1 for Char-
ton’s (2021) original examples). Datasets were produced by online sampling dense
random matrices, from 5×5 up to 15×15 dimensions, with coefficients sampled uni-
formly within the interval (−10,10). The data was used to train a transformer for the
various tasks studied. For all tasks, an output sequence of tokens was considered a
correct solution if it could be decoded as a matrix and represented a correct solution
within a predetermined numerical tolerance.

Under those conditions, the study showed that DNNs can perform matrix trans-
position —which does only involve permutations of tokens in the sequence, without
arithmetic operations—with practically perfect accuracy. This is also the case with
matrix addition up to 10× 10 dimensions and 1% tolerance, with a slight decrease in
performance for matrices of larger sizes. The model’s accuracy dropped noticeably
when trained over matrices of different sizes. Although more complex, matrix multi-
plication presented very similar results to addition, but only for the first two numerical
encodings. The study also exhibited surprisingly high performance in the much more
complex task of eigenvalue computation. The correct prediction of eigenvectors re-
mained restricted to matrices of small sizes. However, the accuracy increases with the
numerical tolerance, indicating that errors are not random but somewhat akin to rough
approximations. Matrix inversion proved to be hard for DNNs, with no more than 80%
accuracy at 5% tolerance. Finally, while achieving high performance on 4×4 matrices,
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SVD could not be predicted for matrices of 5×5 or more dimensions.
The fact that the properties of the objects under analysis are well-known contributed

to providing many principles of interpretability for these results, both for the success
and the failure cases (Charton, 2021, 2022). In this way, Charton could show that, for
eigenvectors, even when the predictions were incorrect, the model correctly learned
some underlying properties, such as their unit norm and their orthogonality. Also, a
fine-grain analysis of the metric used in matrix inversion could show that failures were
to be attributed to the computation of matrix inverses rather than the neural model itself.
The study also provided evidence against the possibility that the results depend on the
model simply memorizing the data and could point to strong predictors of success or
failure for some of the most challenging tasks. Overall, this work showed that the
success of DNNs in performing numerical calculations on matrix operations is highly
dependent on the encoding (the best being P1000 and FP15), with greater difficulty for
increasing matrix size and the capacity of generalizing out of training distribution if
the latter is carefully chosen.

The solution of partial differential equations through DNN techniques has also been
the object of much research effort. Blechschmidt and Ernst (2021) provide a survey of
approaches to numerical solutions. However, Lample and Charton (2020) introduced
an original perspective, testing the DNNs’ capabilities to solve differential equations
and integration symbolically. The overall strategy of this seminal paper was to feed a
function or a first or second-order differential equation as input and require the model
to output its integral or its solution, respectively. Here, too, we find that the training
corpora were carefully designed for the intended tasks. In particular, mathematical
expressions of functions and differential equations were represented as binary trees,
where the internal nodes represent operators, while the leaves can represent either num-
bers, constants, or variables. The trees were then sequentialized through prefix (i.e.,
Polish) notation by enumerating nodes in prefix order and then encoded as a vector to
be fed into the model (see Fig. 2 for an example). As the authors observe, using trees
to represent expressions also provides a principled way to tackle the otherwise thorny
problem of sampling from an expression space. Training and test datasets were care-
fully constructed using Mathematica to produce pairs of equations and solutions, which
were then turned into the chosen representation and carefully cleaned up to eliminate
any possible source of noise. The model used was an early version of a transformer,
considered by the authors as a sequential model aimed at natural language translation.

Relying on all this careful handcrafting of the mathematical object’s representa-
tions, the authors trained models on five tasks, each one relying on a dedicated syn-
thetic dataset: integration of randomly generated functions solvable by a computer
algebra system; integration of derivatives of randomly generated functions; integra-
tion of the composition of one random function and the derivative of another random
function (i.e., integration by parts); first-order differential equations; and second-order
differential equations. Under the precise conditions established by the authors, the cor-
responding models exhibited surprisingly high scores across those tasks, with close
to 100% accuracy for the different kinds of integration and around 80% and 40% for
ODEs of orders 1 and 2, respectively. The latter could be brought up to around 94% and
73% when considering if at least one of the top 10 hypotheses output by the model was
correct (and 97% and 81% for the top 50). These results outperformed those of com-
puter algebraic systems such as Mathematica (under runtime constraints), Matlab, and
Maple. Generalization outside the training distribution proved challenging. However,
the authors showed that the reason was a systematic bias toward specific lengths for the
expressions of problems and solutions in different datasets. Training on mixed datasets
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Figure 2: Example of an original mathematical expression (top left), its tree representa-
tion (top right), and the latter’s sequentialized version (bottom) in Lample and Charton
(2020).

substantially increased the performance on problems outside the training distribution.
While neural frameworks had been shown to successfully process symbolic proper-

ties of mathematical propositions and numerical properties of mathematical objects—
at least to some extent—, the relevance of Lample and Charton’s (2020) work lies in
the capacity of bridging the gap between both orientations by operating on objects
through their symbolic expression. The application of DNNs to symbolic regression
provides another significant confirmation of this potential. Symbolic regression is the
task of finding the symbolic expression of a function given some of its values. Be-
fore the emergence of current DNN models, symbolic regression methods relied on
evolutionary algorithms. Early applications of deep neural techniques to this task in-
clude Martius and Lampert (2016); Udrescu and Tegmark (2019); Kim et al. (2019);
Petersen and Landajuela (2019), where different kinds of DNNs are used to improve
the exploration of the space of possible mathematical expressions, in search of the one
that best fits the set of given values. Martius and Lampert (2016), for instance, pro-
pose a model where, activation functions correspond to symbolic operators acting on
different dimensions of each layer, in such a way that, after training the model through
backpropagation, the symbolic expression can be read out of the learned coefficients.
Petersen and Landajuela (2019) adopt a different strategy, where syntactic properties
of symbolic expressions are encoded as constraints within a generative recurrent ar-
chitecture, which is then trained through reinforcement learning. In all these cases,
training takes place within one set of values (i.e., corresponding to one function) so the
learning procedure only concerns the selection of the symbolic expression for those
values. More recently, an alternative approach has been proposed, more in line with
current trends in AI: The model is trained on pairs of sets of values and corresponding
symbolic expressions, learning to predict the latter from the former (Biggio et al., 2021;
Valipour et al., 2021; d’Ascoli et al., 2022; Kamienny et al., 2022). From this perspec-
tive, the symbolic expression appears as yet another property of a mathematical object
(e.g., a function) initially given through numerical expressions. Significantly, symbolic
regression thus becomes a special case of language modeling, as Valipour et al. (2021)
point out: “Symbolic mathematics behaves as a language in its own right, with well-
formed mathematical expressions treated as valid ‘sentences’ in this language. It is
natural, therefore, to consider using deep language models to address tasks involving
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symbolic mathematics” (p. 2).
A notable case of this recent orientation is that of d’Ascoli et al. (2022), where a

neural model is trained to discover the recurrence relation holding between the first
terms of a numerical sequence. The data is generated by sampling symbolic expres-
sions of functions to produce a recurrence relation and compute the first 25 terms of
a sequence. Symbolic expressions were encoded as sequentialized trees, following
Lample and Charton (2020) (cf. above), while numbers (integers and floats) were
encoded as in Charton (2021). A simple transformer architecture is then trained to
predict a symbolic expression. Since many equivalent expressions could correspond to
the initial function, a prediction is considered correct if the difference between the n
following terms in the sequence computed with the predicted expression and those cal-
culated with the initial expression is smaller than a given tolerance error. The authors
showed their model could achieve an in-distribution accuracy of over 90% for integer
sequences and over 70% for floats for the prediction of the following 5 terms (falling
to 78% and 43%, respectively, for 10 terms), outperforming numeric methods. The
model was also evaluated on the Online Encyclopedia of Integer Sequences (OEIS,
Sloane (2007)) for out-of-domain generalization, where, even if performance dropped
substantially, it showed some significant results and outperformed existing methods for
this task in Mathematica.

Overall, despite many limitations and somewhat modest results often concerning
relatively simple and well-known mathematical objects, this line of work has shown
that the generic approach provided by DNNs can meaningfully manipulate, to a signif-
icant extent, both numeric and symbolic properties of mathematical objects of different
kinds (arithmetical, algebraic, analytic, etc.). Admittedly, the relative simplicity of the
objects under study, whose properties are in most cases well-known, is such that these
results cannot be expected to replace or even compete with existing methods and prac-
tices (at least not anytime soon). But as Charton (2021) makes it clear, this is not the
purpose of this work either. Its significance lies elsewhere, namely in showing that
those well-known practices are not entirely orthogonal to the seemingly unrelated prin-
ciples of neural nets. At any rate, this line of research demonstrates that if DNNs can
do something with mathematical proofs, the same can be said for mathematical objects.

3.3 Skill-Oriented
A third group of works applying neural methods to mathematical knowledge follows a
different strategy than the previous two. The idea is not so much to solve specific tasks
involving mathematical statements (e.g., premise selection) or mathematical objects
(e.g., symbolic integration) but to endow the neural model with general mathematical
skills so that, once trained, it becomes capable of spontaneously solving mathematically
related problems.

Stated in those abstract terms, one could wonder how such a goal could have any
chance of success. However, hope in this research orientation is motivated by the
turning point operated by transformer architectures in the field of natural language
processing (NLP) and AI more generally. The original transformer model introduced
by Vaswani et al. (2017) was conceived to improve machine translation performance
while significantly reducing the training time. Its superiority compared to previous
models had been demonstrated in practically all NLP tasks. Moreover, when trained
as a language model, that is, as a model producing probability distributions over words
or tokens given other tokens,Saxton et al. (2019) showed they could significantly out-
perform the best recurrent models on a variety of mathematical tasks (including alge-
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bra, arithmetic, calculus, and probability among others). To that end, transformers are
trained on synthetic corpora where mathematical tasks are expressed in terms of natural
language question answering, processed as a sequence of characters, e.g. (p. 2):

Question: Let x(g) = 9 * g + 1. Let q(c) = 2 * c + 1.
Let f(i) = 3 * i 39. Let w(j) = q(x(j)). Calculate
f(w(a))

Answer: 54 * a - 30

However, the true power of transformers was revealed with the emergence of what
came to be known as Large Language Models (LLMs). Taking advantage of the scal-
ing capabilities of transformers, primarily due to their exploitation of parallelization,
the distinctive feature of LLMs lies in their training strategy. Popularized thanks to the
BERT model (Devlin et al., 2018), the idea is to train, or “pre-train” as it’s referred
to in the field, a transformer architecture in a highly generic self-supervised fashion,
namely by learning to predict random masked words in natural language sentences over
a gigantic amount of natural language text (typically scraped from all over the Inter-
net). Despite its apparent simplicity, working in an autoregressive generative fashion,4

such training endows the model with the general capacity to perform a large variety
of natural language tasks in the form of a text to be generated as the continuation of
a given prompt. Once pre-trained, the model can be further trained or “fine-tuned” on
a significantly smaller domain-specific dataset, to perform tasks expressible in natu-
ral language and normally requiring domain-specific skills. A variant of this “transfer
learning” strategy was introduced by the celebrated GPT-3 model (Brown et al., 2020),
aiming to circumvent the need for fine-tuning by drastically scaling up both the model
size and the training data.5 This change in scale afforded generative pre-trained trans-
former models a unique feature, known as “in context-learning”, namely, the capacity
to perform domain-specific tasks without any further training, just by prompting the
model with a few examples or a short description of the intended task. Thus, once the
model has been pre-trained, one can input a short text with a few examples of, say,
pairs of grammatically incorrect/correct English sentences before yet another incorrect
sentence, after which the model will continue the text autoregressively, outputting the
correct counterpart. Surprisingly, this highly unexpected behavior holds with reason-
able accuracy for a remarkably wide range of tasks.6

Within this line of research, it became natural to prompt the generic model with
tasks requiring mathematical skills, either after fine-tuning the model on mathematical
data or in an in-context fashion. Shen et al. (2021), for instance, evaluate the perfor-
mance of the original pre-trained BERT model when fine-tuned for three general tasks
associated with mathematics education: large-scale knowledge component prediction,
open-ended question answer scoring or autograding, and knowledge tracing correctness
prediction (see Table 2 for examples). Their work shows that such a model achieves a
performance of almost 92%, 89%, and 87% for the three tasks, respectively (the first
and third measured as accuracy, the second as area under the curve). Moreover, the

4That is, iteratively generating text one word at a time from a sequence of words initially given, recur-
sively augmented by the words produced by the model.

5Whereas BERT contained a maximum of 340 million parameters in its original version, and at the time
of GPT-3’s release, the largest model contained 17 billion, GPT-3 was composed of more than 10 times this
number: 175 billion parameters. As for the data, GPT-3 was trained on 500 billion words (tokens) compared
to 3,300 million for BERT.

6For a comprehensive account of LLMs, see Bommasani et al. (2021). For a precise yet accessible
presentation of the mechanisms behind GPT, see, for instance, Wolfram (2023).
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Task Text
Knowledge component Simplify the expression: (z2)2

prediction Put parentheses around the power if next to coefficient, for example:
3x2=3(x2),x5=x5

Question answer scoring Q: Explain your answer on the box below.
A: because it is the same shape, just larger, making it similar

Knowledge tracing Q: What is 2.6 + (-10.9)?
correctness prediction A: -8.3

Table 2: Example texts of the three tasks examined in Shen et al. (2021)

authors could improve this baseline by adding a pre-training step on a dedicated math-
ematical corpus between the original pre-training and the fine-tuning. The mathemati-
cal corpus included paper abstracts from arXiv, college MOOC syllabus, and textbooks
and curricula ranging from pre-kindergarten to college graduate level.

As for in-context learning, the original GPT-3 paper by Brown et al. (2020) already
showed the arithmetical skills of such a generic model, in particular, by trying to per-
form up to five-digit elementary arithmetic. The model is thus prompted with a few
cases (typically a dozen) of arithmetic operations expressed in natural language, such
as:

Q: What is 24 times 42?
A: 1008

ending with a line that stops at A:, after which the model is expected to fill in the sub-
sequent text, hopefully with the correct answer to the last question. GPT-3 exhibited an
accuracy of almost 100% on 2-digit addition and subtraction and over 94% and 80%
for 3-digit subtraction and addition, respectively. These results are certainly surprising
considering the model was never trained to perform such a task, but only to predict the
next token given previous tokens. In addition, the authors provided evidence that only
a negligible number of arithmetic problems tested could be found in the training data,
suggesting that the model’s performance cannot be attributed to simple data memoriza-
tion. Nogueira et al. (2020) later showed that the capacity of LLMs to perform elemen-
tary arithmetical operations was highly dependent on the textual representation of num-
bers. By fine-tuning a pre-trained T5 model (Raffel et al., 2019) on textual expressions
like the ones used in GPT-3, the authors demonstrated that, while single-token decimal
notation performed very poorly, representing numbers as digits separated by powers of
10, either using scientific notation or not (e.g., 3 10e1 2 10e0 or 3 10 2 for 32),
could afford the model almost perfect accuracy for the addition of numbers up to 15
digits. Their study also confirmed the importance of pre-training on generic masked
language modeling: A transformer trained from scratch needs 10 times more training
examples to reach the same performance on addition as a pre-trained model.

A noteworthy characteristic of this approach is that any mathematical problem is
treated by expressing it in natural language (see, for instance, Griffith and Kalita, 2021;
Meng and Rumshisky, 2019; Cobbe et al., 2021). Yet, as surprising as those elemen-
tary results may be from a conceptual standpoint, tasks requiring mathematical skills
have proved challenging for LLMs generically trained on natural language data when
compared to other (mostly linguistic) tasks, such as machine translation, summariza-
tion, or sentiment analysis (see, for instance, Hendrycks et al., 2021a; Davis, 2023).
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Question: A line parallel to y = 4x+6 passes through (5,10). What is the y-coordinate of the point where this line crosses
the y-axis?

Target: Since the line is parallel to y = 4x+6, we know that its slope is 4. Thus the equation of the line is y = 4x+b where

b is the y-intercept. Plugging (5,10) into this gives 10 = 4 ·5+b ⇒ b = −10 which is what we wanted.

Model output: The line is parallel to y = 4x+6, which means that it has the same slope as y = 4x+6. Since the line passes
through (5,10), we can use the point-slope form of a line to find the equation of the line:

y−10 = 4(x−5)

y−10 = 4x−20

y = 4x−10

Now that we have the equation of the line, we can find the y-coordinate of the point where the line crosses the y-axis by
substituting x = 0 into the equation:

y = 4 ·0−10 = −10 .

Figure 3: Example of a problem from the MATH dataset, correctly solved by Minerva
(Lewkowycz et al., 2022). The solution is output in LATEX, token by token.

As suggested above, a possible strategy for the skill-oriented line of research to remain
relevant despite the difficulty is to further train pre-trained LLMs on large amounts of
mathematical (or mathematically related) texts. This further training remains generic,
in the sense of not being oriented toward any specific task: the training continues to
take place as language modeling. A good example of this approach is provided by the
Minerva model (Lewkowycz et al., 2022), where the PaLM LLM (Chowdhery et al.,
2022) is further trained on a vast mathematical and scientific dataset built from the
arXiv preprint server and mathematical webpages scraped from the Internet. The ob-
jective is to be able to perform both numerical calculations and symbolic manipulation
without training on specific tasks or relying on principles foreign to the neural archi-
tecture (like a calculator or a compiler). To improve the performance, the model also
implements a series of techniques, including prompting methods that encourage de-
tailed answers and majority voting on samples of possible results to a question. A
distinctive feature of Minerva is that, unlike typical language modeling training, math-
ematical expressions are not normalized to keep only the natural language text but
include the syntax of mathematical typesetting systems such as LATEX and MathJax.
Thus, an expression like E = mc2 is represented as the string $E=mcˆ2$ instead of
Emc2. In this way, the model input and output can include a more precise representa-
tion of mathematical expressions. With all these tweaks and tricks, Minerva was able
to significantly outperform previous models on different mathematical benchmarks,
including high school, college, and graduate math problems and STEM-focused lan-
guage understanding problems, with gains of up to 30% in some cases. Figure 3 shows
an example from the MATH dataset correctly solved by Minerva. The model exhibited
an accuracy of over 50% on this dataset, compared to less than 20% for existing neural
models at the moment of publication.

The challenges faced by a skill-oriented approach are more than just technical.
Among others, the notion of “mathematical skill” is difficult to characterize. The field
has progressively converged to an implicit agreement assuming an institution-centered
answer to this question: mathematical skills are the ones measured by formal education
tests, exams, and competitions. This choice is reflected in the benchmarks established
by the field, which are essentially composed of textbooks and curricula from different
educational levels, national (which often means: American) admission tests, like the



18 How to Do Maths With Words

Scholastic Assessment Test (SAT), and institutional competitions such as the Interna-
tional Mathematics Olympiad (IMO). But such a choice is as uncritical as it is unre-
flective. Historical, geographical, and social biases remain unassessed. Also, the field’s
research habits leave no room to address the consequences of reinforcing a school-like
conception of mathematics, which is fundamentally focused on performance due in part
to the uninterpretable characteristics of the proposed models. Let alone the encourage-
ment of an anthropomorphic image of neural models resulting from the idea that they
can acquire skills and “ beat” humans on tests designed for specific human purposes.
Yet, if we refrain from taking these models at their face value and admit from a criti-
cal stance that the notion of mathematical skill is not independent of how educational
institutions measure it at a given space and time, the performance exhibited by these
models appears no less surprising. Compared to the previous orientations, the lack of
dedicated model architectures (like in proof-oriented cases) or datasets (as in object-
oriented approaches), as well as the highly unstructured and underspecified goals and
means characterizing the skill-oriented perspective, endows those results with enough
room for philosophical inquiry.

3.4 Heuristic-Oriented
The fourth and final research orientation differs from the previous ones in that neural
models are not conceived as generic devices performing multiple tasks in a way sup-
posedly akin to human agents. Instead, the idea is to use neural nets as tools addressing
specific aspects of advanced open problems in mathematics in order to guide the in-
tuition of mathematicians at work. From a philosophical perspective, this approach
can be deemed one of the most sensible and fruitful, if only because it grants a cen-
tral place to working mathematicians, whose judgment is arguably indispensable when
mathematical practice is not reduced to reproducing existing mathematical knowledge.
However, this orientation is the most underdeveloped in the current state of the field.
Many factors may explain this situation. Starting with ideological reasons, related to a
widespread belief in the field viewing AI systems as agents imitating, competing with,
and ultimately replacing human agents. Such a position is not independent of eco-
nomic conditions in a field that is largely driven by corporations. In its current state, AI
research is not separable from profit-seeking through the development of market prod-
ucts, and the market size of advanced mathematical research is negligible compared to
the one defined by the automation of known mathematical tasks in business and ed-
ucation. Finally, from a sociological perspective, the development of this orientation
requires the close collaboration of two very different research communities, namely
professional mathematicians (often in the area of pure mathematics) and applied com-
puter scientists and engineers, which represents an additional challenge to the success
of the attempts in this direction.

As a result of their heuristic nature, works belonging to this category are less char-
acterized by unified methods, frameworks, and goals than by the individual adaptation
of new machine learning tools to specific and highly technical mathematical problems.
Accordingly, this orientation might be better presented through concrete cases rather
than general trends. We will present two such cases, which represent two important
aspects of mathematical heuristics: forming conjectures and searching for counterex-
amples.

Early uses of deep learning for conjecture generation can be found in Hughes
(2016); Carifio et al. (2017); Levitt et al. (2019); Jejjala et al. (2019); Heal et al. (2020).
Most of this work concerned combinatorial properties in knot theory. But it was un-
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doubtedly the paper by Davies et al. (2021) that attracted renewed attention to this
line of research by presenting the use of machine learning in mathematical practice
as a general framework for working mathematicians. The authors present deep ‡neural
methods as a tool “to guide [the mathematicians’] intuitions concerning complex math-
ematical objects, verifying their hypotheses about the existence of relationships and
helping them understand those relationships” (p. 70). In their view, deep learning tech-
niques can contribute to understanding the relation between two objects X(z) and Y (z)
by helping to identify a function f̂ such that f̂ (X(z)) ≈ Y (z) for some well-specified
domain of z. Such a function can then be used to verify the existence of structural
features in objects and understand them through attribution techniques. Accordingly,
the proposed method consists in starting with a hypothesis for a function f , generating
synthetic data, training a supervised model, and finding patterns through attribution
techniques. The whole procedure can help mathematicians formulate conjecture can-
didates, informing, in turn, new hypotheses and data generation in an iterative and
interactive process.

The authors of this work demonstrated the fruitfulness of their approach in the
case of two open problems concerning the structure of knots and the combinatorial
invariance of symmetric groups in representation theory. To better understand how
neural techniques interact with mathematical objects and practices in this case, it may
be helpful to examine certain aspects of this work. The result obtained concerns the
connection between two distinct branches of knot theory, which could be addressed
by finding relations between their respective characteristic invariants. In particular, the
goal was to obtain a connection between the signature of knot (a classical algebraic
invariant in gauge theory), and typical geometric invariants in hyperbolic knot theory.
Such a connection was not yet known in the field. The strategy was, then, to predict
the signature of a knot from its hyperbolic invariants.

Using existing libraries in knot theory, the authors produced a sample set of 2,7 mil-
lion knots with their corresponding invariants, divided into a train and a test set, which
served to train a very classic fully-connected feed-forward neural net to predict the
signature from a list of hyperbolic invariants. Somewhat surprisingly, the model was
able to predict the signature over the test set with very high accuracy, indicating that a
connection does indeed exist between both kinds of properties of the knots. However,
the high predictive accuracy can only do so much as verify that a structural connection
exists. To obtain further insight into the structure of such a connection, the authors
made use of gradient-based attribution techniques (saliency maps). The main idea is
to measure the sensitivity of the prediction accuracy to small changes in the different
dimensions of the input, which correspond, in this case, to the different hyperbolic in-
variants. In this way, the authors could determine that the prediction of the signature
relied primarily on three out of twelve invariants, all three related to a geometric struc-
tural feature of the knot called “cusp”. This observation allowed them to define a new
quantity attached to a knot, which they termed “natural slope” and used to state the
conjecture that the signature was equal to the natural slope multiplied by some error.
Interestingly, this first conjecture turned out to be false. Further investigation resulted
in a refined version of the conjecture, including a fourth invariant also identified by the
attribution analysis. This eventually led the authors to prove two theorems connecting
the two kinds of invariants.

Our first example shows that the success of neural nets in targeting functions pre-
dicting some mathematical features from others can contribute to verifying and un-
derstanding structural properties of mathematical objects and formulating and refining
conjectures. On the other hand, their capacity to find arguments in the domain for
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which the prediction fails can provide a powerful tool to discover counterexamples of
existing conjectures. Such a practice can be no less informative of the objects’ struc-
ture. Wagner (2021) provides a notable example of this approach. This paper uses
neural models to find counterexamples and constructions to open problems in combi-
natorics and graph theory. The strategy adopted shows some originality compared to
previous approaches. The idea is to train a neural model to find a mathematical ob-
ject through reinforcement learning, following the success of this technique in training
automatic systems to play games, such as Go. From this perspective, mathematics ap-
pears as a game where counterexample candidates are akin to possible winning moves.
The model is highly general in that it requires only minimal prior knowledge, namely
the encoding of legitimate moves (i.e., the sort of mathematical construction expected)
and a reward function providing a score to be used as feedback for how close the
construction is from a winning move. Thus, by trying to maximize the score without
knowing anything about the structure of the problem, the learning algorithm will im-
prove the model’s performance toward a winning move determined by the conjecture
to be refuted.

Wagner (2021) applied this general strategy to a series of conjectures in extremal
combinatorics, an area of mathematics interested in the maximum or minimum sizes
of collections of finite objects (e.g., graphs) subject to some restriction. Significantly,
within this framework, the general way to encode mathematic constructions is as words,
in such a way that the combinatorial problem is translated into “a problem about gen-
erating a word of certain length from a finite alphabet” (p. 3). For instance, n-vertex
graphs are represented as 0-1 sequences of length n(n−1)

2 , which, as we have seen, can
be generated by neural language models in an autoregressive fashion. The reward func-
tion computes a score once the entire word has been produced. The function typically
includes a positive and a negative component reflecting desired and undesired proper-
ties given the problem studied. Using the reward function, the model is trained through
gradient descent to minimize the cross-entropy loss.

A concrete example among the ones addressed by Wagner (2021) is a conjecture in
spectral graph theory stating that for a connected graph of n ≥ 3 vertices, with largest
eigenvalue λ1 and matching number µ , we have λ1 + µ ≥

√
n−1+ 1. Although a

counterexample to this conjecture already existed for n = 600, the method proposed
was able to find a counterexample for n = 19 by setting n as a hyperparameter and
training a neural model to minimize λ1 + µ (set as the reward or loss function) hop-
ing the loss would drop below

√
n−1+1 for some construction after enough training.

Figure 4 shows a sample of the best construction at different moments of the training
process. The last graph constitutes a counterexample for the targeted conjecture. Inter-
estingly, while the trained model remains uninterpretable, the analysis of the evolution
of the model’s output during training provides some insight into the structural proper-
ties of the problem. We can see that the model first restricts the outputs to sparse graphs
and then converges to a “balanced double star” structure. As exemplified in the paper,
this kind of structural insight can be obtained even in the case where the model fails
to provide an explicit counterexample for the problem in question, either indicating
how a counterexample could be eventually obtained or providing hints as to why the
conjecture holds and how it could be proved.

The relevance of neural methods for heuristic purposes in mathematical research
has been called into question, for instance, by Davis’s (2021) critique of Davies et al.
(2021), for it is not clear what the specific value added by DNNs is compared to
more classic statistical methods already in use by mathematicians in their own practice.
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Figure 4: Sample of the best construction over the training progress (from left to right,
and from top to bottom) in Wagner (2021). The last graph (bottom right) constitutes a
counterexample for the targeted conjecture.

Moreover, as pointed out by Wagner (2021), methods like the ones used in this paper
are not adequate to address all problems and, as the author acknowledges, they “did
not succeed in refuting any of the most famous conjectures in the field” (p. 1). Never-
theless, the renewed strengths and capabilities of statistical methods brought about by
deep learning techniques are such that their most elementary application to the treat-
ment of open problems in advanced mathematics is far from trivial, neither regarding
the means deployed nor the kind of results obtained. In particular, neural methods
seem to force the development of statistical approaches in fields classically considered
foreign to them. Even though a heuristic use of DNNs relies more on a case-by-case
approach rather than a solid general framework, it seems that the near future will show
a fruitful development of works like the ones presented in this section. Consequently,
this line of work could pave the way to more fundamental research on the statistical
aspects of various fields in pure mathematics.

4 Philosophical Significance

Given the state of the field at the moment of writing these lines, the survey presented in
the previous section is certainly fragmentary, partial, and guaranteed to be outdated by
the time the reader encounters these pages. The four categories proposed to understand
existing research orientations should be taken as temporary markers on moving soil
rather than well-defined boundaries on a stable domain. Many of the papers presented
lie at the crossroad of multiple research lines, and one can expect numerous blends of
the four orientations in the near evolution of the field. It is nonetheless revealing that,
faced with the renewed question of how to apply novel machine learning techniques
to mathematics, instead of resorting to well-established distinctions, the research ori-
entations tend to be spontaneously organized according to the AI researchers’ implicit
assumptions as to what it is that we do when we do mathematics. Indeed, as far as
lines of research can be identified in this rapidly evolving field, they resist any tradi-
tional disciplinary (e.g., algebra, calculus, etc.), epistemological (e.g., pure, applied),
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or foundational (e.g., logic, set theory, category theory, etc.) categorization. Instead,
they consistently explore specific practices assumed to characterize what mathematics
is about: proving theorems, manipulating objects, acquiring skills, or addressing open
problems.

The results in each identified direction exhibit countless limitations, many of which
are already revealed in the literature, others yet to discover. We have referred to some
of them in our account, including brittleness, poor generalization, restriction to elemen-
tary cases, lack of interpretability, absence of conceptual and theoretical foundations,
and uncritical attitude towards mathematical corpora (see also Davis, 2019; Welleck
et al., 2022). All these limitations are real and could not be stressed enough if neu-
ral methods are to become a significant component of future mathematical practices.
However, the simple fact that those mathematical practices can be addressed, if only
with relative success, from the radically empirical perspective assumed by current ma-
chine learning approaches should be enough to arouse the interest of philosophers and
historians of mathematics.

There are many reasons for the philosophy of mathematics, and the history and
philosophy of mathematical practices in particular, to turn its attention to the recent
mathematical applications of machine learning. Even if, or precisely because, those
reasons do not coincide with the ones advanced by the researchers in the field. Starting
with the fact that, were these approaches to succeed to the point of becoming widely
adopted as mathematical tools, the image of mathematics as we know it would cer-
tainly change in ways that are far from trivial, neither from a philosophical nor from
a historical standpoint. Such a modification of mathematical practices would signifi-
cantly impact the many dimensions philosophers and historians have become used to
identifying in them, such as the role of proofs (Chemla, 2012), the meaning of or even
the need for foundations (Wagner, 2019), the nature of explanations (Mancosu, 2008),
or the role of experimental procedures (Borwein and Bailey, 2003; Avigad, 2008).

However, in the remaining pages, we would like to focus on a general feature under-
lying what, in our view, constitutes the philosophical novelty of neural models across
their different applications to mathematical practices: the renewed role of language in
our understanding of mathematics.

4.1 The Return of Language
If there is something our survey of neural applications to mathematics brings to light,
it is at least the following: The success—actual or promised—of those methods in all
their areas of application is inseparable from a whole new perspective on mathematical
language, which goes far beyond the traditional understanding of mathematical expres-
sions as simple notations for pre-existing mathematical contents or a more or less arbi-
trary syntax for an independently determined semantics. The reason is that language,
and more precisely, writing, including the wide variety of textual forms (statements,
expressions, symbols, characters, etc.), is all these models can rely on to perform the
mathematical tasks they are required to address. Whatever happens within the black
box of a neural net happens on the basis of the processing of syntax and syntax alone.
Granted, DNNs are not, as such, purely syntactic entities but the implementation of
a relatively well-specified semantic procedure. However, such a procedure is highly
generic, to the point that it can be successfully applied to very different kinds of data
(images, language, sound, etc.) to perform significantly different kinds of tasks. The
rapid convergence in recent years toward a single architecture (i.e., transformers) for
all tasks confirms the resolve to rely on an unspecific analytic procedure. Given their
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generic character, it follows that if neural models can deal with mathematical content
to any extent, such content is nowhere else to be found than in the corpus of (eventually
supervised) textual expressions fed as inputs.

It is essential to understand that this is not a bug but a feature of this approach.
Indeed, multiple ways exist to enhance neural models with hand-made rules and math-
ematical principles to increase their performance over specific tasks. As soon as accu-
racy becomes the primary concern, researchers do not hesitate to use all sorts of tweaks
and tricks, introducing semantic features by other means. The resulting models pro-
gressively become, then, the object of an engineering practice, thus losing much of the
philosophical interest concerning their relation to language. Nevertheless, the connec-
tionist credo behind DNNs exhorts to develop learning models as generic concerning
tasks as sparing regarding assumptions about the data. Consequently, whether openly
acknowledged or unwittingly, current DNN applications to mathematical knowledge
grant a critical place to mathematical language and textuality, providing the conditions
for an original reflection on its role in the production and circulation of mathematical
content.

Two primary consequences aspects stand out when assessing the originality of the
role played by language in this setting. The first is the effect of the fact that bare
syntactic objects are all these models can resort to for processing mathematical knowl-
edge. Without dedicated axiom systems, deductive rules, logical operations, symbolic
reasoning, material manipulation, or access to any other kind of context than textual,
most of the conceptual focus within this line of research is put on mathematical rep-
resentations. Be it logical statements, formulas, equations, expressions, or symbols,7

researchers in machine learning have been led to raise the question of mathematical
representations in ways that can communicate with current research interests in the
philosophy of mathematics. Take, for instance, the proof-oriented approach and its
reliance on multiple proof assistants’ syntax to represent logical statements. The nu-
merous strategies to process that syntax to improve the neural models’ performance
on inferential tasks (e.g., character- vs. token-based processing, explicit definition re-
placement, variable renaming, etc.) could provide novel perspectives for the design
of mathematical languages, as addressed, for instance, by Avigad (2015); ?. Further-
more, the various methods to encode mathematical objects in the object-oriented ap-
proaches (sequentialized binary trees for formulas, lists of numbers for matrices, differ-
ent positional encodings for numbers, etc.) provide the elements for a fruitful dialogue
with current investigations on the role of representations in the philosophy and history
of mathematical practices, such as Schlimm (2018); Waszek (2018); Kohlhase et al.
(2018). In any case, practically no study across the different orientations fails to under-
line the critical character of the corpus and its representation for the success or failure
of neural methods in mathematics. Yet, this centrality of representational aspects is
not without novelty compared to existing philosophical perspectives on this problem.
For the goal here is not to find the best representation for a given content (a suitable
“notation”) but the best representation for given texts so that tasks assumed to rely
on their unknown content can be correctly performed by a statistical learning model
such as neural nets. The careful investigation of this original question may bring un-
precedented perspectives and insights into the classical problem of the relation between
syntax and semantics, in mathematics as well as in language in general.

The second remarkable consequence concerning mathematical language is related
7To the best of our knowledge, there has been no work within this area of research involving the content

of mathematical diagrams yet. From a different perspective, Sørensen and Johansen (2020) have used neural
techniques to identify diagrams in mathematical texts.



24 How to Do Maths With Words

to the connection between mathematics and natural language. Indeed, addressed as
an artificial language from a modern logical perspective, most philosophical traditions
have kept mathematical language apart from natural language for almost one and a half
centuries. Moving away from this standard position, neural machine learning models
are led to operate novel articulations between both, which are far from philosophically
trivial. On a superficial level, one can find that, since many of the corpora used are
composed of existing published papers (especially since the emergence of LLMs), the
natural language necessarily present in those papers is usually leveraged to contribute
to determining the content of mathematical expressions. A conceptual investigation
on this topic is likely to provide compelling insight into the interaction between both
natural and mathematical expressions in different corpora, be it from a historical per-
spective, in line with works such as those of Netz (1999) or Herreman (2000), or from
a more cognitive viewpoint (Giaquinto, 2008; Toffoli and Giardino, 2013; Kohlhase
et al., 2018). However, deep learning approaches bring natural language to the fore-
front of mathematical practice and knowledge in a more fundamental fashion. For the
vast majority of the learning models and techniques used for processing mathematical
expressions are none other than those specifically developed for the processing of nat-
ural language. The recent convergence toward transformer architectures also confirms
this circumstance. This means that, within this setting, mathematical expressions are
treated as being themselves a sort of natural language. This idea is not only implicit in
all uses of neural language modeling architectures in mathematical applications but, as
we have seen, is repeatedly advanced by the researchers themselves across all research
orientations. At odds with a view making a clear-cut distinction between natural and
artificial languages or resolved to reduce the former to the latter through logical means,
the success of neural methods in mathematics is inextricably tied to an essential yet
unexplored link between mathematical contents and the mechanisms governing the or-
dinary practice of natural language. It could be, for instance, that mathematical and
natural language share specific properties, or that the treatment of natural language
constitutes a general framework for studying all kinds of languages, or yet that deep
neural models constitute a general framework for the analysis of any type of data, in-
cluding both natural language and mathematics. Whatever the case, the feats of neural
models’ applications to mathematics mark the return of natural language to the center
of the reflection about what it means to do mathematics, in a philosophically original
and compelling way.

4.2 New Challenges for a Linguistic Approach to Mathematical
Practice

Despite the assumed divide between artificial and natural languages in modern philoso-
phies of science, linguistic approaches to mathematics have not been altogether absent
from the historical and philosophical scene, particularly since the emergence of the phi-
losophy of mathematical practices. The chapters included in the current section of this
Handbook provide an excellent account of much of that work. However, the many uses
of neural models call for an original linguistic approach to mathematics, presenting
new challenges to a language-driven philosophy of mathematics.

As already advanced, the originality lies in that mathematical content is derived
from expressions alone, semantics from syntax, meaning from pure text. Yet, in modern
mathematics, access to content is supposed to be provided through explicit and rigorous
symbolic mechanisms, such as definitions within a formal language, logical operations,
deductive rules, systems of axioms, or formal models. Those symbolic principles are
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assumed not only to determine what those expressions mean but also to control how
expressions interact and what results from those interactions. Without direct access
to explicit symbolic means—let alone cognitive faculties or social conditions—it is
difficult to know how the semantics or the content of expressions can be determined.

The difficulty is even greater if one considers the mathematical content DNNs ma-
nipulate is not limited to referential aspects of expressions. Indeed, the solution of
mathematical tasks requires much more than associating, for instance, the expression
406 to a particular number or quantity, or to the same entity as the expression four
hundred and six; it goes beyond referring the expression A∧B to a logical con-
junction or y′′−y= 0 to a differential equation of second order. The tasks in question
require, in addition, that enough operational content is involved when determining that
406 added to 326 equals 732, that A∧B is likely or unlikely to be a premise in the
proof of some given logical statement, or that y(x) = c1e

x+c2e
−x is the solution to

that differential equation.
Resorting to how content is dealt with in natural language, as most models do,

might sound promising because the range of expressions does not depend, in this case,
on explicit rules and other artificial procedures—typically absent in neural models—
but tends to rely on more “natural” mechanisms. The latter could be invoked as being
also at work in the relation between mathematical expressions and their content to ex-
plain the surprising capabilities of neural nets. However, as natural as it may seem, if
we restrict ourselves to pure expressions, the access to content in natural language is far
from simple and direct. The meaning of words is usually given through other words,
risking an infinite regression, and ostensive definitions are doomed to inescapable am-
biguities unless considerable segments of content are already known, as the radical
critiques of Wittgenstein (2009) and Quine (2013), among others, have sufficiently
shown.

To make things worse, the recourse to natural language imposes significant con-
straints on the treatment of expressions. Indeed, DNNs can only achieve their results
by addressing the problem as a predictive task. Thus, given the expressions 406 and
326 as inputs, the model is required to predict the expression 732, after being trained
over a massive quantity of similar cases (although not this specific one). Or more pre-
cisely, it is expected to predict the expression 732 from any expression containing
406, 326 and some expression of the additive operation, as in 406+326= or what
is 406 plus 326? (or some sequential encoding thereof). Now, by approaching
the task as if we were dealing with natural language, we force models to perform those
predictions by the same means by which they can predict, say, you from she asked
when generating the expression she asked you, or Paris from The capital
of France is, however differently structured those expressions and contents may
be.

Finally, analyzing those underlying means presents innumerable obstacles. As it
is widely acknowledged, DNN models are practically uninterpretable (see for instance
Lipton, 2018). In particular, we have no access to formal representations of a model
other than its internal state, which can go from hundreds of billions up to over a tril-
lion parameters in the current state of the art. Several methods have been developed
in recent years, providing tools for the analysis and principles of interpretability of
NLP neural models (see Belinkov and Glass (2019) and Madsen et al. (2021) for a sur-
vey). Among them, the method known as probing (Conneau et al., 2018) enjoys some
success. The idea is to use the encoded vector representations of a model to train a
classifier over a specific linguistic property considered relevant for performing linguis-
tic tasks (e.g., grammatical dependencies). If the classifier achieves good performance,
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the properties in question can be regarded as somewhat encoded in the internal state
of the original neural model. However, while several mechanisms have been proposed
to show that the information corresponding to the probed property is legitimately at-
tributable to and effectively employed by the model (Hewitt and Liang, 2019; Ravfogel
et al., 2021), a fundamental gap remains between neural models and the symbolic fea-
ture being assessed. In other words, high—and ultimately superhuman—performance
on such predictive tasks, which can indeed be conceived to grasp significant aspects of
the content of expressions, might not reach that accuracy through the same means as
humans. Neural models might be able to write sensible natural language or solve natu-
ral language tasks without ever following grammatical rules for any acceptable sense of
grammatical rule-following. Likewise, those models might be able to solve mathemat-
ical tasks with reasonable and even surprising accuracy without ever manipulating any
of the symbolic procedures by which we have historically controlled our mathematical
practices. Converging results do not imply identical theories, representations, knowl-
edge, or capabilities, which, in turn, does not mean that content is not being grasped.
Interpretability attempts like the one of Charton (2022) presented above are certainly
remarkable and promising but still limited and, all in all, largely insufficient given the
scope of the problem.

5 Conclusion: But How?

In the face of all these obstacles, which are by no means unknown to researchers in
the field, why should we place any hope at all in contemporary machine learning ap-
proaches to mathematical knowledge? Why should we rely on the orientations that
a critical assessment could derive from them for a linguistically driven philosophy of
mathematical practice? Isn’t the entire enterprise simply ill-conceived?

If the proof of the pudding is in the eating, it seems fair to acknowledge that, while
the results exhibited so far are certainly limited from a mathematical point of view,
they are far from insignificant from a philosophical one. Given the scale of the chal-
lenges, the slightest evidence that a seemingly impossible task can be achieved deserves
philosophical consideration. Moreover, the models in question have shown surprising
capacities in the treatment of natural language, where the richness of content makes the
task otherwise challenging. Indeed, despite these models’ duly identified limitations,
the results exhibited by the application of DNNs to natural language processing in the
last decade have been enough to catalyze, if not altogether generate, a revolution in the
field (cf. Manning, 2015).

Due to the close relation between mathematical texts and natural language within
this framework, it seems legitimate to assume that the hope placed in neural methods
for treating mathematical language is grounded on the mechanisms underlying the suc-
cess of neural language models, whatever they may be. In this sense, the symbolic
character of mathematical practices cannot be an objection a priori to this approach.
On the one hand, it is not excluded that neural models are implicitly manipulating some
higher-order representation akin to symbolic properties or structures (cf., for instance,
Manning et al., 2020). On the other, symbolic practices in mathematics as we know
them are a relatively recent phenomenon. Although mathematical practices across dif-
ferent historical periods and cultures have constantly used expressive means that are
irreducible to those of natural language, the recourse to a foundational role of symbolic
practices such as axiomatic methods, formal systems of inference, or model-theoretical
semantics has only become standard in the course of the past century. Mathematical
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knowledge has very well been produced and evolved for millennia across different cul-
tures without such foundations (cf. Wagner, 2019) and would arguably continue to do
so if alternative principles and practices came to fulfill better the tasks expected from it
in existing cultures, even if that requires to re-inspect our existing notion of semantics,
content or even understanding, both in natural language and in mathematics.

Accordingly, a philosophical investigation of this phenomenon should focus on
the elementary mechanisms responsible for the success of generic learning algorithms
in manipulating natural language content when applied to a practically raw corpus of
texts, and on the reasons and conditions for those same mechanisms to apply to the
treatment of mathematical content. To avoid resorting to dubious, or at any rate un-
verifiable analogies between artificial neural models and human learning capacities, let
alone biological characteristics of the human brain, it is imperative to turn our atten-
tion to what those models actually do. As we have seen, DNNs are statistical models
resulting from a statistical learning procedure in the context of predictive tasks. If such
models can grasp linguistic content when operating with pure text, it is natural to ask
what the source of that content can be. Since the expressions fed into the model are
nothing but a sequence of empty identifiers, and models are highly generic before train-
ing, the source of all content, be it linguistic or mathematical, can lie nowhere else but
in the training corpus. Which is another way of saying: in the series of collective and
historically determined linguistic and mathematical practices, as they are recorded in
the many forms textuality can take.

That significant segments of such content can be drawn from the expression of those
practices is something the limited yet startling results of mathematical applications of
neural language models are displaying before our eyes. The task remains to understand
how that is even possible and invest this feat with the philosophy it deserves. With it, a
whole new program opens up before a philosophy of mathematical practices informed
by a renewed theory of language and signs.
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