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Neural Networks

Credit: Jeremy Jordan

https://www.jeremyjordan.me/intro-to-neural-networks/
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Deep Neural Nets (DNNs)

Source: https://www.asimovinstitute.org/neural-network-zoo/
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Main Trends in Neural Applications to Mathematics

˛ Proof-Oriented

— Bansal et al., 2019; Kaliszyk et al.,

2017.

˛ Object-Oriented

— Blechschmidt and Ernst, 2021;

Charton, 2021; d’Ascoli et al., 2022;

Lample and Charton, 2019; Li et al.,

2021; Ryskina and Knight, 2021

˛ Skill-Oriented

— Brown et al., 2020; Peng et al.,

2021; Shen et al., 2021

˛ Heuristic-Oriented

— Davies et al., 2021

(Alemi et al., 2016)

(Peng et al., 2021)

(Lample and Charton, 2019)

(Davies et al., 2021)
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Arithmetic in Transformers

(Brown et al., 2020)
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Arithmetic in Transformers

(Nogueira et al., 2021)
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Philosophical Significance

˛ The fact that mathematical properties can be addressed from the empirical

perspective of current ML approaches should be enough to raise a whole series of

philosophical questions.

˛ However, the fruitful encounter between the philosophy of mathematics and

current machine learning practices has not yet taken place.

˛ First step in this direction:

focus on the relation between mathematics and natural language (textuality).

˛ Question to be asked:

What must mathematics be, given that models designed to analyze, reproduce

and manipulate natural language are able to grasp some significant aspects of it.
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Distributionalism and Word Embeddings

˛ Distributional Hypothesis
(Harris, 1960; Saussure, 1959)

— “You shall know a word by the

company it keeps!” (Firth, 1935)

— The content of a linguistic unit is

determined by its distribution over a

corpus (i.e., the other units appearing

in its context)

˛ Computational interpretation:

Word Embeddings

(Bengio et al., 2003)
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Word Embeddings: word2vec

a cat catches a mouse

Source: Ferrone et al., 2017
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Word Embeddings: Example

˛ Example: house
house

0.25
0.00
0.25

˛ Syntactic and semantic properties

— Similarity

— Analogy

house
house-city+countryside

farmhouse

0.75

0.50

0.25

0.00

0.25

0.50
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Word Embeddings: Similarity

house cosine distance

houses 0.292761

bungalow 0.312144

apartment 0.3371

bedroom 0.350306

townhouse 0.361592

residence 0.380158

mansion 0.394181

farmhouse 0.414243

duplex 0.424206

homes 0.43802

Embedding Projector

DATA

 

Checkpoint: Demo datasets

Metadata: oss_data/word2vec_10000_200d_
labels.tsv

UMAP T-SNE PCA CUSTOM

PCA is approximate. 

Total variance described: 8.5%.

Show All
Data

Isolate 101
points

Clear
selection

 

COSINE EUCLIDEAN

neighbors

distance

Nearest points in the original space:

palace 0.512

houses 0.513

representatives 0.562

commons 0.564

hall 0.592

parliament 0.595

senate 0.608

royal 0.626

castle 0.626

hotel 0.646

town 0.650

seat 0.658

lords 0.664

tower 0.670

residence 0.673

corner 0.674

chamber 0.676

cathedral 0.676

building 0.684

street 0.688

 5 tensors found

Word2Vec 10K

 Label by

word
 Color by

No color map

 Edit by

word Tag selection as

Load Publish Download Label

Sphereize data 

 X

Component #1

 Z

Component #3

 Y

Component #2

Points: 10000 Dimension: 200 Selected 101 points

house
Search

house .*

 by

word

100

BOOKMARKS (1) 

house(https://projector.tensorflow.org)
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Word Embeddings: Analogy

vking ´ vqueen « vhero ´ vheroine
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Alice

Bob

cow

bull

woman

man

landlady

landlord

she

he

actress

actor

heroine

hero

princess

prince

queen

king

wells

tours

tearing

resources
working

free
earned

weekly

humanitarian

progressing
billions

beneficial

significance
amongst

bars

settlers

demonstrating

therapeutic

● Selected pairs of words related by gender

● Random pairs of words
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word2vec PCA projection: Gender
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Word Embeddings: Analogy

vgood ´ vbetter « vsoft ´ vsofter
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shortest

shorter
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slowest

slower

slow

solicitmeats

desire

airflow

bristles

assuring
surefire

policyholder

expedited

ballistic

reconciliation

white

finds

afire
swish

ultimate impressed

slurry

bridging

parasitic
mule
biometrics

mourned

detected fauna

hydrantscatcher

● Selected triads of comparatives

● Random triads of words
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word2vec PCA projection: Comparatives
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Embedding Space

Embedding Projector

DATA

 

Checkpoint: Demo datasets

Metadata: oss_data/word2vec_10000_200d_
labels.tsv

UMAP T-SNE PCA CUSTOM

PCA is approximate. 

Total variance described: 8.5%.
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(https://projector.tensorflow.org)

(Mikolov et al., 2013)

(Hamilton et al., 2016)

(https://nlp.stanford.edu/~johnhew/structural-probe.html)
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Word Embeddings as Matrix Factorization

˛ Word2vec performs an implicit factorization of a
word-context matrix (Levy and Goldberg, 2014)

— (shifted) pointwise mutual information (PMI)

— Truncated SVD to reduce dimensionality

˛ Equivalent results can be achieved with explicit vector

representations (Levy et al., 2015)

˛ More complex architectures (e.g. Transformers, Vaswani

et al., 2017) are based on these representations for

elementary units.

(Vaswani et al., 2017)
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Mathematical Embeddings

˛ Several works on mathematical embeddings:
(Gao et al., 2017; Greiner-Petter et al., 2019, 2020; Krstovski

and Blei, 2018; Mansouri et al., 2019; Naik et al., 2019; Purgał

et al., 2021; Ryskina and Knight, 2021; Thawani et al., 2021)

(Mansouri et al., 2019)

˛ At least two reasons why it seems insufficient

— Lack of focus on the operational content of expressions.

¨ 406 added to 326 equals 732
¨ A ^ B is likely to be a premise in the proof of some given logical statement
¨ y2

´ y “ 0 accepts the solution ypxq “ c1ex
` c2e´x

— Embedding techniques are adopted uncritically

Juan Luis Gastaldi | The Language of Mathematics 18/29



Dimensions of Formal Content

Formal Content: the dimension of content which finds its source in the internal relations

holding between the expressions of a language.

˛ Syntactic Content: the content a unit receives as a result of the multiple

dependencies it can maintain with respect to other units in its context

˛ Characteristic Content: the content resulting from the inclusion of a unit in a class

of other units by which it accepts to be substituted in given contexts

˛ Informational Content: the content related to the non-uniform distribution of units

within those substitutability classes
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Dimensions of Formal Content

Syntactic
Content

“the gavagai is on the 
mat”

Type Theory

Type

Characteristic
Content

{cat, dog, spider, 
gavagai}

Clustering

Class

Informational
Content
{cat:0.059%,
dog:0.012%,

spider:0.009%
gavagai:0.000%}

Probability and Information 
Theory

Probability Distribution
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Arithmetical Content

˛ How is it possible that a distributional approach to (natural) language can account

for the mathematical content of mathematical expressions?

˛ Illustration: recursive structure and total order of natural numbers

˛ The task is to identify:

— Class of numerals as an autonomous class among all character strings (characteristic

content)

— Iterative construction principle and self-similar syntactic embedding (syntactic content)

— Probability distribution characterizing the order of all elements in the class of numerals

(informational content)
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The Class of Numerals

Ai,j “ pmipci; cjq “ log ppci,cjq

ppciqppcjq
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Clustering

= - / 0 9 8 3 4 5 6 7 1 2 u i e a o y k z x s d g n l r h c t q v f m p w b j
Characters

0

2

4

6

8

Di
st

an
ce

 (w
ar

d)

O :“ t“, ´,-, {u

D :“ t0, 9, 8, 3, 4, 5, 6, 7, 1, 2u

V :“ tu, i, e, a, ou

C :“ ty, k, z, x, s, d, g, n, l, r, h, c, t, q, v, f, m, p, w, b, ju
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Compressed Matrix
- /
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Self-Similar Syntactic Embedding
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Total Order Through Benford’s Law

1 2 3 4 5 6 7 8 9
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)
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Conclusions

˛ Semantic features of natural numbers could be derived from the distributional
properties of syntax by means of tools associated to natural language processing

— Maybe also other mathematical contents?

˛ Distributional approaches provide an original perspective on mathematical

contents, unseen within the philosophy of mathematics

˛ Potentially useful for the history and the philosophy of scientific practices, due to

the central role of the analysis of corpora

˛ A philosophical account of ML results can articulate the need for the explicit

derivation of structural features underlying the syntactic data. We need to move

from a distributional to a structuralist conception of language.
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